
Why Is Big Data Important?

Note that Big Data solutions aren’t a replacement for your existing warehouse solutions.

when you use Big Data technologies:

 Big Data solutions are ideal for analyzing not only raw structured data,
but semistructured and unstructured data from a wide variety of
sources.

• Big Data solutions are ideal when all, or most, of the data needs to be

analyzed versus a sample of the data; or a sampling of data isn’t nearly
as effective as a larger set of data from which to derive analysis.

• Big Data solutions are ideal for iterative and exploratory analysis

when business measures on data are not predetermined.

What is Hadoop and History

 Open source software framework of tools designed for storage and processing of large

scale data on clusters of commodity hardware.

 Created by Doug Cutting and Mike Carafella in 2005.

 Cutting named the program after his son’s toy elephant.

The object of the tools is to support running of application on the big data

Hadoop is open source set of tools distributed under apache license.

Traditional Approach

Limitation to the traditional approach:

Hadoop Approach:

Hadoop runs applications using the MapReduce algorithm, where the data is processed in parallel

on different CPU nodes. In short, Hadoop framework is capable enough to develop applications

capable of running on clusters of computers and they could perform complete statistical analysis

for a huge amounts of data.

Simple Hadoop Architecture

The Hadoop projects that are covered in this book are described briefly here:
Common
A set of components and interfaces for distributed filesystems and general I/O
(serialization, Java RPC, persistent data structures).
Avro
A serialization system for efficient, cross-language RPC, and persistent data storage.

MapReduce
A distributed data processing model and execution environment that runs on large
clusters of commodity machines.

HDFS
A distributed filesystem that runs on large clusters of commodity machines.

 Files are split into blocks
 Blocks are split across many machines at load time

◦ Different blocks from the same file will be stored on different machines
 Blocks are replicated across multiple machines
 The NameNode keeps track of which blocks make up a file and where they are stored

Pig
A data flow language and execution environment for exploring very large datasets.
Pig runs on HDFS and MapReduce clusters.
or A high level platform for creating MapReduce programs using language called Pig Latin. Similar to that of
SQL for RDBMS system
Hive
A distributed data warehouse. Hive manages data stored in HDFS and provides a
query language based on SQL (and which is translated by the runtime engine to
MapReduce jobs) for querying the data.
or A data warehouse infrastructure for providing data summarization ,query and analysis .
HBase
A distributed, column-oriented database. HBase uses HDFS for its underlying
storage, and supports both batch-style computations using MapReduce and point
queries (random reads).
or An open source non relational distributed database written in java running on top of HDFS
ZooKeeper
A distributed, highly available coordination service. ZooKeeper provides primitives
such as distributed locks that can be used for building distributed applications.
Sqoop
A tool for efficiently moving data between relational databases and HDFS.

Apache Hadoop is designed to have Master Slave architecture:

Master: Namenode, JobTracker

Slave: {DataNode, TaskTraker}, ….. {DataNode, TaskTraker}

HDFS is one primary components of Hadoop cluster and HDFS is designed to have Master-slave architecture.

Master: NameNode

Slave: {Datanode}…..{Datanode}

- The Master (NameNode) manages the file system namespace operations like opening, closing, and renaming

files and directories and determines the mapping of blocks to DataNodes along with regulating access to files by

clients

- Slaves (DataNodes) are responsible for serving read and write requests from the file system’s clients along

with perform block creation, deletion, and replication upon instruction from the Master (NameNode).

Map/Reduce is also primary component of Hadoop and it also have Master-slave architecture

Master: JobTracker

Slaves: {tasktraker}……{Tasktraker}

 - Master {Jobtracker} is the point of interaction between users and the map/reduce framework. When a

map/reduce job is submitted, Jobtracker puts it in a queue of pending jobs and executes them on a first-

come/first-served basis and then manages the assignment of map and reduce tasks to the tasktrackers.

- Slaves {tasktracker} execute tasks upon instruction from the Master {Jobtracker} and also handle data motion

between the map and reduce phases.

https://msdnshared.blob.core.windows.net/media/MSDNBlogsFS/prod.evol.blogs.msdn.com/CommunityServer.Blogs.Components.WeblogFiles/00/00/01/41/09/5468.hadoopms.jpg

 First, we divide the input in three splits as shown in the figure. This will distribute the work

among all the map nodes.

 Then, we tokenize the words in each of the mapper and give a hardcoded value (1) to each

of the tokens or words. The rationale behind giving a hardcoded value equal to 1 is that
every word, in itself, will occur once.

 Now, a list of key-value pair will be created where the key is nothing but the individual

words and value is one. So, for the first line (Dear Bear River) we have 3 key-value pairs –
Dear, 1; Bear, 1; River, 1. The mapping process remains the same on all the nodes.

 After mapper phase, a partition process takes place where sorting and shuffling happens

so that all the tuples with the same key are sent to the corresponding reducer.

 So, after the sorting and shuffling phase, each reducer will have a unique key and a list of
values corresponding to that very key. For example, Bear, [1,1]; Car, [1,1,1].., etc.

 Now, each Reducer counts the values which are present in that list of values. As shown in

the figure, reducer gets a list of values which is [1,1] for the key Bear. Then, it counts the
number of ones in the very list and gives the final output as – Bear, 2.

 Finally, all the output key/value pairs are then collected and written in the output file.

Creating our Hadoop program. Hadoop natively runs compiled Java programs, so we need

to complete WordCounter.java in order to solve our problem.

This involves three steps:

 (a) creating the mapper class that takes the input and produces <key, value> pairs;

(b) creating the reducer class that takes the <key, value> pairs produced by the mapper and

combined them as appropriate to solve the problem; and

(c) creating the WordCouner's main() function to use our mapper and reducer. Taking these one at a

time:

Creating the Mapper Class. Inside WordCounter.java, find the comment:

 // replace this comment with the mapper class

and replace it with the following class:

 /* Our 'mapper' class emits (word, "1") pairs,

 * for later counting by our 'reducer' class.

 */

 public static class TokenizerMapper extends Mapper{

 public void map(Object key, Text value, Context context)

 throws IOException, InterruptedException {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());

 context.write(word, one);

 }

 }

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 }

As you can see, this class extends a Hadoop generic class named Mapper, and overrides its map()

method. This map() method has three parameters: a key (which our method does not use, but

could), a value (consisting of a line of text from a file), and a context (to which we will write our

results), all of which are passed to it by Hadoop.

The body of the method tokenizes the value parameter into words, and then uses a loop to iterate

through those words. For each word, the loop writes the pair (word, "1") to the context. When the

loop completes, our mapper has done its work!

Creating the Reducer Class. Still inside WordCounter.java, find the comment:

 // replace this comment with the reducer class

and replace it with the following class:

 /* Our 'reducer' class receives a sequence of (word, "1") pairs

 * and for each word in the sequence, adds up its "1"s...

 */

 public static class IntSumReducer extends Reducer {

 public void reduce(Text key, Iterable values, Context context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

 }

 private IntWritable result = new IntWritable();

 }

This class extends the Hadoop Reducer class, overwriting its reduce() method. Like the map()

method, the reduce() method takes three parameters: a key, which is one of the word values emitted

by the mapper phase; a values, which is an iterable sequence of the values that were combined with

that key; and a context to which the reducer will write its results.

The body of the method declares a sum variable to keep track of the number of occurences of the

key, and then uses a loop to iterate through the values. Since the mapper produces "1" values, each

val in values is "1", so the loop converts that "1" from a string to the int 1 and adds it to sum. When

control leaves the loop, the method sets instance variable result to sum and writes the pair (key,

result) to the context. That completes our reducer!

reference: https://cs.calvin.edu/courses/cs/374/exercises/12/lab/

pseudo code:

Example Scenario
Given below is the data regarding the electrical consumption of an organization. It contains

the monthly electrical consumption and the annual average for various years.

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

If the above data is given as input, we have to write applications to process it and produce results such as finding

consumption exceeded 30 .

This is a walkover for the programmers with finite number of records. They will simply

write the logic to produce the required output, and pass the data to the application written.

But, think of the data representing the electrical consumption of all the largescale industries

of a particular state, since its formation.

When we write applications to process such bulk data,

 They will take a lot of time to execute.

 There will be a heavy network traffic when we move data from source to network server and so on.

Input Data

The above data is saved as sample.txtand given as input. The input file looks as shown

below.

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

//Mapper class

 public static class E_EMapper extends MapReduceBase implements

 Mapper<LongWritable ,/*Input key Type */

 Text, /*Input value Type*/

 Text, /*Output key Type*/

 IntWritable> /*Output value Type*/

 {

 //Map function

 public void map(LongWritable key, Text value,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException

 {

 String line = value.toString();

 String lasttoken = null;

 StringTokenizer s = new StringTokenizer(line,"\t");

 String year = s.nextToken();

 while(s.hasMoreTokens())

 {

 lasttoken=s.nextToken();

 }

 int avgprice = Integer.parseInt(lasttoken);

 output.collect(new Text(year), new IntWritable(avgprice));

 }

 }

 //Reducer class

 public static class E_EReduce extends MapReduceBase implements

 Reducer< Text, IntWritable, Text, IntWritable >

 {

 //Reduce function

 public void reduce(Text key, Iterator <IntWritable> values,

 OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException

 {

 int maxavg=30;

 int val=Integer.MIN_VALUE;

 while (values.hasNext())

 {

 if((val=values.next().get())>maxavg)

 {

 output.collect(key, new IntWritable(val));

 }

 }

 }

 }

What is Cloudera?

Cloudera is revolutionizing enterprise data management by offering the first unified Platform

for Big Data: The Enterprise Data Hub. Cloudera offers enterprises one place to store,

process, and analyze all their data, empowering them to extend the value of existing

investments while enabling fundamental new ways to derive value from their data.

Founded in 2008, Cloudera was the first, and is currently, the leading provider and supporter

of Apache Hadoop for the enterprise. Cloudera also offers software for business critical data

challenges including storage, access, management, analysis, security, and search.

Cloudera was the first commercial provider of Hadoop-related software and services and has

the most customers with enterprise requirements, and the most experience supporting them, in

the industry. Cloudera’s combined offering of differentiated software (open and closed

source), support, training, professional services

What are Cloudera's products?

Cloudera’s platform, which is designed to specifically address customer opportunities and

challenges in Big Data, is available in the form of free/unsupported products (CDH or

Cloudera Express, for those interested solely in a free Hadoop distribution), or as supported,

enterprise-class software (Cloudera Enterprise - in Basic, Flex, and Data Hub editions) in the

form of an annual subscription. All the integration work is done for you, and the entire

solution is thoroughly tested for enterprise requirements and fully documented.

